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Abstract – The recently developed Generalized Extremal Optimization (GEO) algorithm is applied for the 
solution of an inverse problem of radiative properties estimation. A comparison with two other stochastic 
methods, Simulated Annealing (SA) and Genetic Algorithms (GAs), is also performed, demonstrating that GEO 
is competitive. From the test case results we could also infer that a hybridization of GEO with gradient based 
methods is very promising.     
 
1. INTRODUCTION 
Several explicit and implicit formulations have been developed for the solution of inverse radiative transfer 
problems [1-3,8,17,19]. In the implicit formulation, the inverse problem is usually replaced by an optimization 
problem in which we seek to minimize a cost function. 

For the solution of the resulting optimization problem, deterministic, stochastic and hybrid approaches have 
been used [18,20,21]. Recently, a new optimization algorithm inspired by a simplified evolutionary model was 
proposed, the so called Generalized Extremal Optimization (GEO), [23]. This algorithm was developed to be 
easily applicable to a broad class of nonlinear constrained optimization problems, with the presence of any 
combination of continuous, discrete and integer values, while having only one free parameter to be adjusted. Its 
efficacy to tackle complex design spaces has been demonstrated with test functions and real design problems 
[10,24-27]. Nonetheless, being a new algorithm, many of its features remain to be explored, such as 
parallelization, hybridization with other optimization algorithms, or different types of representation for the 
design variables. Moreover, it is also interesting to verify its efficiency in dealing with real problems coming 
from different areas of application, in comparison to other stochastic optimization methods. 

In the present work we apply the GEO for the solution of an inverse problem of radiative properties 
estimation. From the experimental data on the intensity of the exit radiation we want to obtain estimates for the 
optical thickness, single scattering albedo, and the boundary diffuse reflectivities of one-dimensional 
homogeneous participating media. Test case results are presented, and comparisons with two other stochastic 
methods, Simulated Annealing (SA) and Genetic Algorithms (GA), are performed. 

 
2. MATHEMATICAL FORMULATION OF THE DIRECT AND INVERSE PROBLEMS 
 
2.1 Direct Problem  
Consider the problem of radiative transfer in an absorbing, isotropically scattering, plane-parallel gray medium 
with diffusely reflecting boundary surfaces. The mathematical formulation of the direct problem with azymuthal 
symmetry is given by [16]  
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where ),( µτI  represents the dimensionless radiation intensity, τ the optical variable, µ  the cosine of the 

polar angle, ω  the single scattering albedo, and  1ρ  and 2ρ  the diffuse reflectivities  at  0=τ  and 0ττ = , 

respectively. The intensities of the external isotropic radiation sources are represented by  and . 1A 2A
When the geometry, the radiative properties and the boundary conditions are known, problem (1) may be 

solved yielding the values of the radiation intensity ),( µτI , for 00 ττ ≤≤  and 11 ≤≤− µ . This is the 
direct problem. For the solution of the direct problem in the present work we use Chandrasekhar’s discrete 
ordinates method [9]. 

 
2.2 Inverse Problem 
In the inverse radiative transfer problem we are interested in the following radiative properties are considered 
unknown 

Τ= },,,{ 210 ρρωτZ                                                (2) 

but measured data on the intensity of the exit radiation at the boundaries 0=τ  and 0ττ = , i.e., , 

, are considered available, where  represents the total number of experimental data. 
iY

Ni ,...,2,1= N
As the number of measured data, , is usually much larger than the number of parameters to be estimated, 

the inverse problem is formulated as a finite dimensional optimization problem in which we seek to minimize the 
cost function (also referred to as the objective function)  
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where  represents the calculated value of the radiation intensity (using estimates for the unknown radiative 

properties 

iI

Z ) at the same boundary, and at the same polar angle, for which the experimental value  is 
obtained. 

iY

 
3. THE GENERALIZED EXTREMAL OPTIMIZATION ALGORITHM (GEO)  
The Generalized Extremal Optimization Algorithm (GEO), [24-26], is a newly proposed meta-heuristic suitable 
to tackle complex optimization problems. It was developed as a generalization of the Extremal Optimization 
(EO) method, [6], in such a way that it can be readily applied to a broad class of problems. Either EO or GEO 
are based on the simplified evolutionary model of Bak-Sneppen [5], which was devised to show the emergence 
of Self-Organized Criticality (SOC) in ecosystems. The theory of Self-Organized Criticality has been used to 
explain the power law signatures that emerge from many complex systems in such different areas as geology, 
economics and biology, [4]. It states that large interactive systems evolve naturally to a critical state where a 
single change in one of its elements generates “avalanches” that can reach any number of elements in the system. 
The probability distribution of the sizes “ s ” of these avalanches is described by a power law in the form   

                                                                                                        (4), γ−≈ ssP )(
where γ  is a positive parameter. That is, smaller avalanches are more likely to occur than big ones, but even 
avalanches as big as the whole system may occur with a non-negligible probability. This kind of dynamic 
behavior, according to Bak and Sneppen, [5], could explain the bursts of evolutionary activity observed in the 
fossil record and that has been given the name of punctuated equilibrium, [12].  

In the Bak-Sneppen model, species are represented in a lattice and, for each of them, there is associated a 
fitness number in the range [0, 1]. The evolution is simulated forcing the least adapted species, the one with the 
least fitness, and their neighbours, to change (it can “evolve” or be “extinct” and replaced by a new one, that not 
necessarily has a better fitness). This is done by assigning new fitness numbers, randomly, to these species.  This 
simulated ecosystem is started with the fitness of the species distributed uniformly in the range [0, 1]. Since the 
less adapted species are constantly forced to change, the average fitness value of the ecosystem increases and, 
eventually, some time after initialization all species have a fitness number above a “critical level”.  However, as 
even good species may be forced to change (if they are neighbours of the least adapted one), it happens that a 
number of species may fall below the critical level from time to time. That is, the equilibrium (being above the 
critical level in “stasis”) of one or more species is punctuated by avalanches, whose occurrence is described by a 
power law, [5]. Although the claim that the evolution of species may happen in a system that is self organized 
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critical has been controversial, [13, 22], an optimization heuristic based on the Bak-Sneppen model may evolve 
solutions quickly, systematically mutating the worst individuals, preserving at the same time throughout the 
search process, the possibility of probing different regions of the design space (via avalanches). 

Based on the Bak-Sneppen model, Boettcher and Percus developed the EO method, [6], which has been 
applied successfully to combinatorial optimization problems, [6, 7], in which a fitness number is associated with 
the design variables. However, as they pointed out, in some cases this may become an ambiguous or even 
impossible task, [6].  The GEO algorithm was devised to overcome this problem, so that it could be easily 
applicable to a broad class of problems, with any kind of design variable, either continuous, discrete or a 
combination of them, in a design space that may be multimodal or even discontinuous and subject to any kind of 
constraint.  

In GEO a string of  bits is considered a population of species. That is, each bit is a species. The string 
encodes the 

L
M  design variables. For each of them is associated a fitness number that is proportional to the gain 

(or loss) the objective function value has in mutating (flipping) the bit. All bits are then ranked from 1, for the 
least adapted bit, to  for the best adapted. A bit is then mutated according to the probability distribution 

, where  is the rank of a selected bit candidate to mutate, and 
L

γ−∝ kP k γ  is a free control parameter. Making 
0→γ , the algorithm becomes a random walk, while for ∞→γ , we have a deterministic search. It has been 

observed that the best value of γ , i.e., the one that yields the best performance of the algorithm, for a given 
application generally lies within the range [0.75, 3.0]. This, added to GEO having only one free parameter, 
makes the algorithm easily settable to give its best performance on the problem that is being tackled. After the 
bit is mutated, the procedure is repeated until a given stopping criterion is reached, and the best configuration of 
bits (the one that gives the best value for the objective function) found is returned.  

In a variation of the canonical GEO described above, the bits are ranked separately for each sub-string that 
encodes each design variable, and M  bits (one for each variable) are flipped at each iteration of the algorithm. 
In previous works, [24,25], it was observed that this implementation seems to be more efficient than the 
canonical one for the cases in which the problem being tackled has only bound constraints (constraints that 
represent the limits of feasible values for the design variables).  Since this is the case here, this approach was 
implemented to tackle the inverse radiative transfer problem described in Section 2. In Figure 1 are shown the 
main steps of the implementation. 
 

For each bit attribute a fitness number that is proportional to be the gain or loss the 
objective function has, compared to the best value found so far, if the bit is flipped. 

Rank the bits according to their fitness numbers, independently for each variable. 

Mutate a bit of each variable with probability ;γ−∝ kPk jlk ,...,1= , where l  is the 

number of bits of variable 
j

Mjj ,...,1; = . 

Was the stopping criterion met?
No 

Yes 

Return the best solution found during 
the search

Initialize randomly a population of  bits that encodes L M  design variables.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 1. Outline of the GEO algorithm as implemented for the solution of the inverse radiative 

transfer problem. 
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The performance of GEO in each particular application of interest is affected by the value of its free 
parameterγ . Therefore a preliminary study was done so that a proper value of γ  could be used in the inverse 
radiative transfer problem.  GEO was run 20 times for a test case and for each value of γ  taken from a discrete 
set [0.75, 2.25]. For computationally expensive objective functions, such as the one investigated here, the search 
for the proper value of γ is usually done with fewer function evaluations per run than the value intended to be 
used later on the solution of the problem at hand. For the preliminary study each run was stopped after 10000 
function evaluations. The average of the best values of the objective function found in the runs for each γ  are 
shown in Figure 2.  

 

 
Figure 2.  Average of the best objective function values found in 20 runs of GEO for each value of γ . 

 
From Figure 2 it can be seen that the best performance of GEO for this problem occurs for γ  close to 1.25. 

This value was used for all other runs performed in the present study.   
A detailed explanation of GEO can be found in [25, 26], while examples of applications to real complex 

design problems can be found in [10, 25-27].    
 

4. THE SIMULATED ANNEALING (SA) AND GENETIC ALGORITHMS (GAs) 
In order to evaluate the performance of GEO we present in this work a comparison with the results obtained with 
two other stochastic methods, Simulated Annealing (SA) and Genetic Algorithms (GAs). We present next just a 
brief description of such methods. Comprehensive descriptions or further details of the computational 
implementation may be found in [11, 14, 15, 18, 20]. 

 
4.1 Simulated Annealing (SA) 
Based on statistical mechanics reasoning applied to a solidification problem Metropolis et al. [15] introduced a 
simple algorithm that can be used to accomplish an efficient simulation of a system of atoms in equilibrium at a 
given temperature (T). In each step of the algorithm a small random displacement of an atom is performed and 
the variation of the energy E∆  is calculated. If 0<∆E  the displacement is accepted, and the configuration 
with the displaced atom is used as the starting point for the next step. In the case of  , the new 
configuration can be accepted according to Boltzmann probability 

0>∆E

)exp()( Tk
EEP

B

∆−=∆                                                          (5) 

where kB is the Boltzmann’s constant.  
A uniformly distributed random number r  in the interval [0,1] is then calculated and compared 

with . Metropolis criterion establishes that the new configuration is accepted if , otherwise 
it is rejected and the previous configuration is used again as a starting point. Using the objective function 

)( EP ∆ )( EPr ∆<

)(ZQ , defined in  eqn. (3) in place of energy, and defining configurations by a set of variables , i = 1, 

2,…, 

}{ iZ
M , see eqn. (2) where 4=M  is the total number of unknowns, the Metropolis procedure generates a 

collection of configurations of a given optimization problem at some temperature T [14]. This temperature is 
simply a control parameter. The simulated annealing process consists of first “melting” the system being 
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optimized at a high effective “temperature”, then lowering the “temperature” until the system “freezes” and no 
further change occurs.  

The main control parameters of the algorithm implemented (“cooling procedure”) are the initial 

“temperature”, , the cooling rate, rt, number of steps performed through all elements of vector 0T Z , NS , 
number of times the procedure is repeated before the “temperature” is reduced, Nt, and number of points of 
minimum (one for each temperature) that are compared and used as the stopping criterion if they all agree within 
a tolerance ε , . εN

 
4.2 Genetic Algorithms (GAs) 
Darwin’s theory of survival of the fittest gives the main idea of the method [11]. A set of feasible designs 
constitutes a generation, which has a fixed number of individuals. A set of better designs is derived from the 
previous generation where the individuals are allowed to reproduce and cross among themselves with bias 
allocated to the fittest members. Combinations of the most favorable characteristics of the mating members of 
the population result in a new generation that is more fit than the previous one.  

In the traditional genetic algorithm (GA) each set of variables is represented by a binary string, and the cost 

function )(ZQ , see eqn. (3), is used to construct the fitness function that indicates how good a member is in his 
generation. 

The GA is implemented with three basic operations: reproduction, crossover and mutation, and the main 
control parameters of the algorithm implemented are the number of individuals in the population, n, probability 
of crossover, pc, probability of mutation, pm, and number of generations, ng. In this paper we use a micro-genetic 
algorithm (µGA), which is a variation of the simple genetic algorithm. The major difference between the 
traditional GA and the µGA comes in the population choice and the way new information is brought into the 
evolution process. Usually the population size is fixed at five. It is known that GA generally do poor with very 
small populations due to insufficient information processing and early convergence to non-optimal solutions. In 
the case of the µGA new strings are brought into the population at regular intervals. The re-start procedure helps 
in avoiding premature convergence.  
 
5. RESULTS AND DISCUSSION 
In other to evaluate the performance of the algorithms GEO, SA and µGA in the solution of the inverse radiative 
transfer problem described in Section 2, the three sets of radiative properties shown in Table 1 were considered. 
These sets were chosen for yielding relatively difficult test cases for the evaluation of the algorithms.  
 
Table 1:  Exact values of the radiative properties. 
 

Radiative property Case 1 Case 2 Case 3 
Optical thickness 0τ  1.0 2.0 0.5 

Single scattering albedo ω 0.5 0.8 0.3 
Diffuse reflectivity 1ρ  0.2 0.1 0.1 

Diffuse reflectivity 2ρ  0.2 0.8 0.8 
 
As real experimental data on the intensity of the exit radiation was not available, we have generated sets of 
synthetic experimental data with  

σiexactcalc rZII
ii

576.2)(exp +=                                                                 (6)  

where  represents the calculated values of the radiation intensity using the exact values of the radiative 

properties, 

icalcI

exactZ , as given in Table 1,  is a pseudo-random number in the range [-1,1], and ir σ  simulates the 
standard deviation of the measurement errors. The values of σ =0.005, 0.002 and 0.0025 lead to errors in the 
order of, or smaller than, 5% in the exit radiation intensives for cases 1, 2 and 3, respectively.  
In Figure 3 is presented the evolution of the average of the best values of the objective function, in 10 runs, and 
for each method (GEO, SA and µGA), for Case 1 listed in Table 1, using experimental data without noise, i.e. 
σ = 0 in eqn. (6). In Figure 4 the same test case is considered, but now with noisy data, σ =0.005. 
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Figure 3. Average of the best values of the 
objective function, as a function of the number of 
function evaluations for Case 1, without noise.   

Figure 4. Average of the best values of the 
objective function, as a function of the number of 
function evaluations for Case 1, with noise.   

 
In Table 2 are presented for Case 1, with and without noise in the synthetic experimental data, the worst, 

average and best estimates obtained for the unknown radiative properties (design variables). Here the worst 
estimates obtained for each method correspond to the run, among the 10 runs performed for each method, for 
which the objective function is the highest at the end of the run, and the best estimates correspond to the run for 
which the value of the function is the lowest. 
 
Table 2: Worst, average and best estimates for Case 1. 

  

0τ  ω  
1ρ  2ρ  

1fx  
Exact value 1.000 0.500 0.200 0.200 - 

worst 1.000 0.499 0.198 0.200 6.07x10-8 
average2 1.000 0.500 0.199 0.200 1.80x10-8 Without 

noise best 1.001 0.500 0.201 0.200 1.84x10-9 
worst 1.032 0.525 0.253 0.204 4.03x10-4 

average2 1.034 0.526 0.254 0.203 4.03x10-4 

SA 
With 
noise best 1.034 0.526 0.254 0.203 4.03x10-4 

worst 0.963 0.509 0.251 0.250 2.50x10-4 
average 1.010 0.508 0.218 0.201 4.93x10-5 Without 

noise best 0.987 0.495 0.190 0.205 2.79x10-6 
worst 1.540 0.817 0.000 0.000 2.2755 

average 1.505 0.780 0.092 0.019 1.8205 

µGA 
With 
noise best 1.173 0.589 0.373 0.163 5.58x10-4 

worst 0.943 0.500 0.231 0.253 2.63x10-3 
average 0.965 0.481 0.157 0.211 1.31x10-4 Without 

noise best 1.012 0.502 0.200 0.194 9.00x10-6 
worst 0.924 0.503 0.234 0.266 9.46x10-4 

average 1.030 0.527 0.256 0.212 6.16x10-3 

GEO 
With 
noise best 1.046 0.541 0.295 0.212 4.37x10-4 

fx1  is the value of the objective function at the end of the run. 
2 The SA stopping criterion was reached for all runs in less than 25000 evaluations. 
 

In Figures 5 and 6, and in Table 3, are presented the results for the Case 2 listed in Table 1, and in Figures 7 
and 8, and Table 4, are presented the results for Case 3. 
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Figure 5. Average of the best values of the 
objective function, as a function of the number of 
function evaluations for Case 2, without noise.   

Figure 6. Average of the best values of the 
objective function, as a function of the number of 
function evaluations for Case 2, with noise.   

Table 3: Worst, average and best estimates for Case 2. 
  

0τ  ω  
1ρ  2ρ  

1fx  
Exact value 2.000 0.800 0.100 0.800 - 

worst 2.003 0.800 0.101 0.800 1.72x10-8 
average2 2.000 0.800 0.100 0.800 8.64x10-9 Without 

noise best 2.000 0.801 0.102 0.800 0.92x10-9 
worst 2.027 0.803 0.109 0.799 7.76x10-5 

average2 2.017 0.801 0.104 0.799 7.75x10-5 

SA 
With 
noise best 2.016 0.801 0.104 0.799 7.75x10-5 

worst 2.576 0.838 0.200 0.750 1.45x10-4 
average 2.240 0.821 0.169 0.789 7.11x10-5 Without 

noise best 1.955 0.790 0.062 0.797 7.63x10-6 
worst 3.847 0.894 0.402 0.669 4.01x10-4 

average 3.751 0.878 0.336 0.602 3.10x10-4 

µGA 
With 
noise best 2.933 0.853 0.249 0.720 2.50x10-4 

worst 4.843 0.891 0.373 0.249 4.28x10-4 
average 2.507 0.817 0.148 0.718 1.72x10-4 Without 

noise best 2.033 0.809 0.138 0.803 1.80x10-4 
worst 2.077 0.816 0.164 0.831 5.21x10-3 

average 2.385 0.824 0.167 0.774 2.62x10-2 

GEO 
With 
noise best 2.160 0.811 0.129 0.787 9.90x10-4 

fx1  is the value of the objective function at the end of the run. 
2 The SA stopping criterion was reached for all runs in less than 25000 evaluations. 
 

From the results presented in Figures 3 to 8, it can be seen that the SA performed on average better than the 
µGA and GEO for all cases, either with or without noise.  Nonetheless, it is interesting to note that the SA 
usually had not the best performance early in the search. In fact, its results became the best only after around 
7500 function evaluations.  This is probably the consequence of the annealing, and it is an indication that, for 
this problem, making the algorithm more deterministic along the search is beneficial. It also forecast that the 
performance of GEO could be significantly improved if the parameter γ  is varied through the search, which 
would have an effect similar to the decrease of temperature in the SA. This will be a subject for a future study.   
 
 
 

D03
7



        
 
Figure 7. Average of the best values of the 
objective   function, as a function of the number of 
function evaluations for Case 3, without noise. 

Figure 8. Average of the best values of the 
objective   function, as a function of the number of 
function evaluations for Case 3, with noise. 
                                           

 Table 4: Worst, average and best estimates for Case 3. 
  

0τ  ω  
1ρ  2ρ  

1fx  
Exact value 0.500 0.300 0.100 0.800 -  

worst 0.500 0.300 0.100 0.800 3.08x10-8 
average2 0.500 0.300 0.100 0.800 1.57x10-8 Without 

noise best 0.500 0.300 0.100 0.800 8.49x10-10 
worst 0.487 0.305 0.147 0.806 1.08x10-4 

average2 0.486 0.305 0.149 0.806 1.08x10-4 

SA 
With 
noise best 0.487 0.305 0.148 0.806 1.08x10-4 

worst 0.430 0.362 0.375 0.841 5.82x10-4 
average 0.463 0.319 0.226 0.818 2.08x10-4 Without 

noise best 0.518 0.299 0.049 0.793 2.52x10-5 
worst 0.406 0.317 0.360 0.839 4.8x10-3 

average 0.431 0.327 0.298 0.833 8.01x10-3 

µGA 
With 
noise best 0.469 0.325 0.233 0.818 1.6x10-3 

worst 0.396 0.210 0.152 0.750 1.97x10-2 
average 0.501 0.290 0.107 0.786 4.32x10-3 Without 

noise best 0.523 0.277 0.003 0.789 2.08x10-4 
worst 0.831 0.543 0.094 0.728 3.31x10-2 

average 0.525 0.378 0.237 0.812 6.82x10-3 

GEO 
With 
noise best 0.386 0.302 0.382 0.844 8.17x10-3 

fx1  is the value of the objective function at the end of the run. 
2 The SA stopping criterion was reached for all runs in less than 25000 evaluations. 
 

Another interesting result from Figures 3 to 8 is that while GEO performed worse than µGA for the cases 
without noise, when noise was added it had a similar performance for Case 2 and a much better one for Case 1. 
In fact, for Case 1 with noise GEO performed close to the SA (even better when the number of function 
evaluations  was less than 7000), while the performance of µGA was severely degraded. 

As described before, 10 runs were performed for each case (1 to 3 in Table 1), for each method (GEO, SA 
and µGA), considering two sets of experimental data for each case, i. e. with and without noise. Each run for 
GEO and µGA was initiated from a randomly chosen initial guess. Both GEO and µGA used 10 bits to encode 
each of the unknowns, which implies a precision of 0.005 for τ , and 0.001 for ω , 1ρ  and 2ρ . For both 
methods the computations were stopped at 25000 function evaluations. The choice of the control parameter for 
the GEO, γ , has already been described. 
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The control parameters used for the SA were: = 5.0,  rt = 0.75,  = 20 , = 5 ,  =  4, and the 
convergence tolerance was 

0Τ sN tN εN
ε  = 10-6 . 

The runs of GEO were performed on one PC with the processor Intel Xeon (2.2 GHz with 1 GB of RAM) 
and one PC with the processor AMD Athlon (1.8 GHz with 256 MB of RAM). Each run of GEO took an average 
of 2h 48 min on the former processor and 2h 38 min on the latter. The runs of SA and µGA were performed on 
one PC with the processor Pentium III (750 MHz with 192 MB of RAM). On average each SA run took 3h 25 
min and each µGA run took 3h 10 min.  

The better values obtained for the objective function with SA are due to the estimated values for the radiative 
properties, which are closer to the exact values than the ones obtained with the µGA and GEO, as shown in 
Tables 2 to 4. However, even for the SA, the presence of noise can degrade the performance of the algorithms 
significantly, mainly on the recovery of the value of the parameter 1ρ . This is in fact the main difficulty 

associated with the test cases presented, i. e. the low values of 1ρ  combined with the external illumination given 

by =1.0 and =0.0, in eqns (1b) and (1c), respectively. The external radiation detectors receive the 
information regarding the diffuse reflectivity at the inner part of the boundary at 

1A 2A
τ = 0 only after, the radiation 

goes into the medium through this boundary, is reflected at the boundary at 0ττ = . Then it is partially 
transmitted through the boundary τ = 0, being then measured by external detectors located on this boundary, and 
then partially reflected, being then partially transmitted through the boundary 0ττ = , when it is measured by 
the external detectors located on that side of the medium. The low sensitivity of the exit radiation intensities to 
the diffuse reflectivity 1ρ  is confirmed by a sensitivity analysis.  

As shown by Silva Neto and Soeiro [18,20], a hybrid method which combines a global search metaheuristic 
and a gradient-based method (GBM), would most likely yield better results for the inverse radiative transfer we 
are looking at.  It is interesting to note that in a hybrid strategy where the metaheuristic is used for a few number 
of function evaluations, just to find regions of local optima to be exploited by the GBM, the use of GEO or GA 
could yield a better combination than with the SA since, in most cases, they are showed to be more efficient than 
the SA in reducing the value of the objective function at the beginning of the search.  

 
6. CONCLUSIONS 
In the present work it is demonstrated that the recently developed Generalized Extremal Optimization Algorithm 
(GEO) performed well, in a competitive basis with other stochastic methods, namely Simulated Annealing (SA) 
and Genetic Algorithms (GA), for the solution of the inverse problem of radiative properties estimation.  

It was devised also that a very promising approach would be the hybridization of GEO with a gradient-based 
method. Another path to be followed in the near future is the use of a varying control parameter for GEO, γ , in 
a similar way to the cooling rate of SA.  

The test cases considered in the present work were intentionally difficult, and the three methods used, GEO, 
SA and µGA performed competitively, with a slight advantage for GEO and µGA at the beginning of the search 
(what is an interesting feature for the hybridization with a gradient based method), and for SA in the long run (in 
case the stochastic algorithms are run fully).  
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